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The main message and the program for today:

The main message:

some of the arguments and techniques developed originally and
applied so far exclusively only in the Lorentzian case do also apply
to Riemannian spaces

The program for today:
o Kinematical background: (M, g.)

notations and conventions

the ambient space (M, gqp) with no use of field equations
embedded codimension-one surfaces

the basic tools are n 4+ 1 decompositions

the decomposition of the ambient space Riemann tensor

the decomposition of the ambient space Ricci tensor

foliations of the ambient manifold by codimension-one surfaces
another alternative decomposition of V,ny

some fundamental relations
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The main areas where 3 + 1 decompositions had been used:

e initial value problem
Darmois (1923) [N = 1, N® = 0, Gaussian normal system], Lichnerowicz (1939)
[N =0, a bit more flexible], Choque-Bruhat (1952) [the generic one],...

o Hamiltonian formalism
Dirac (1959), Arnowitt-Deser-Misner (ADM), Wheeler (1960-1970), Moncrief
(1975),...
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Notations and conventions:

The generic setup:

The considered spaces: (M, g.)

o M : (n+ 1)-dimensional, smooth, paracompact, connected,
orientable manifold

o gap: Smooth, Lorentzian_ ; | ) or Riemannian | ; ) metric

The abstract index notation

o A tensor of type (k,1) will be denoted by a letter followed by &
contravariant and [ covariant, lower case Latin indices:
T %y b,

o Components relevant for particular choices of dual basis fields
{vi,} €T, {v**} C T* will be indicated by using lower case
Greek indices: THi#k,

e isomorphism between 7 and T* provided by the metric:
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Notation |.:

Curvature:

e The unique torsion free metric compatible covariant derivative
operator V,

vagbc =0

e the action of the commutator can be expressed in terms of a
tensor field R,,.? such that for an arbitrary form field w,

(Vavb - Vbva) We = Rabcd Wq

i

k
(vavb _ vbva) TClMdel.“dl = — ZRabeCi TClmen.del...dl—F
=1

l
+ Z Rabdje T Ch

=1 dy...e...d;
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Key properties of the Riemann tensor:

If V, is a torsion free covariant derivative operator and Rabcd its curvature

(1) Rabcd = _Rbacd,

) R[abc]d =0,

(3) Rabed = —Ravde (if V, metric compatible),

(4) v[aRbc]de =0 [BianChi'identity] (vaRbcde + chabde + vacade = O)

Ricci tensor, scalar curvature, Einstein tensor:

o ! Rabcd: curvature of a metric compatible V,

(1)and 3) = Ra®% = Rgpe® = 0 BUT Rgp®? and Ryp o in general not =>
@ Ricci tensor:
€
Rap = Raep
SYMMELNC R,y = Ryep® = Rea®y = RepCa = Roa

@ scalar curvature:

R = Rag® = R,"

o Einstein tensor:

Gab = Rab - %gabR 5 (vaGab = 0) .
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Embeddings of codimension-one surfaces:

smooth codimension-one surface submanifold in an ambient space (M, gap)

¢ is an embedding if ¢ : ¥ — [X] is a homeomorphism

o self-intersection of ¢[X] is not allowed

o there exist linear maps ¢, : T(p) — T (¢(p)) and ¢* : T*(o(p)) — T*(p)
relating the tangent and cotangent spaces of points p € ¥ and ¢(p) € M,
respectively

@ these can be extended to (k,0) and (0,!) type tensors but, as p[3] C M is a
codimension-one surface in M (a proper one-dimension lower subset of M),
there is no ¢« that could relate arbitrary (k,) type tensors
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Morse function:

o there exist a smooth function ¢ : & [C M| — R on a
neighborhood & of [X¥] such that d,0 # 0 (almost everywhere)

¢[X] ={p€ M | o(p) = const }

e in mathematician’s sayings: o : & [C M] — R is usually assumed
to be a Morse function such that it has only non-degenerate
and isolated critical points

e a point is critical point is where
o the critical point is non-degenerate if the Hessian of the map, i.e. the matrix

is non-singular;

the index of a critical point is the number of the negative eigenvalues

e in physicist's sayings: only regular origins may occur;
only positive eigenvalues of the Hessian are allowed or, in other
words, there exists a well defined tangent space there
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The n + 1 decomposition:

The unit normals

@ there exist a smooth function o : & [C M] — R with non-vanishing gradient
0,0 such that ¢[X]—from now on (by standard abuse of notation) we denote
it by X—is represented by a 0 = const level surface

° Na~ 00 ... &... g% — n%=g%n,

ﬁ |
< %

@ n? the ‘unit norm’ vector field that is normal to

lgh

1
nng, = € Nale = (€ g7 0.00;0) ™ 2(9,0)

o the sign is not fixed: € takes the value —1 or +1 for Lorentzian or Riemannian
metric gqp, respectively.
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Projections:

The projection operator:

o the projection operator

het = 6, — engn®  with  h,h.t = h,b

to the o = const level surface

e the metric induced on the o = const level surface

hab = haehbf Jef = Gab — €N

e the covariant derivative operator associated with hg: Vwy
on X

Dy = he®hy®V g we

Dahbc - hadhbehcfvd (gef _ enenf) =0

e the curvature of D, is internal w.r.t. X as it is determined by h;,
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b

Decompositions of V,n; using 3,° = h,” + engn

The acceleration and the “extrinsic curvature”:
@ a trivial decomposition

Vauny = 6a€5bfvenf = (he® + enane)(hbf + enbnf)venf
= (haehbfvenf) -+ e(haenbnf + hbfnane)(venf) + nanenbnf(venf)

o with n/Vens = 1V.(n'ns) =0

o the acceleration ‘hb :=nVeny = hbf(nevenf) ‘ is tangential to X

o the extrinsic curvature on ¥ ‘Kab = heh ) Veny = h€,Veny ‘

1) ‘Kab is symmetric as Veng = V(enf) + V[enf] = V(enf) + n[eXf] ‘

in the last step the Frobenius theorem was applied to the hypersurface orthogonal

a

n?, i.e. there exists a form field X, such that Vicns = nj Xy

2) Ka = haehbfv(e ng = %haehbfgngef = %haehbffnhef = %fnhab

@ the foregoings also imply

Vany = (haehbfvenf) + enahbfne(venf) = Kap + engny

Istvdn Récz (University of Warsaw & Wigner RCP) UW-ITP, 18 October 2018 11/20



The relations between the two Riemann tensors:

The Gauss relation: Examples: hob = 6,° — engn®

o the only non-vanishing projections: ‘hafhbghckhje Ry’ ‘

‘ hafhbghjenk ngkj ‘, ‘ hbfhednanc Rapc® = nn€ Rabcd ‘
o

‘ hadhbfvd hfe = hadhbfvd (gfe — enfne) = —¢€ Kabne

‘ hatneVgwe = ho N4 (m°wg) — [Ra®Vin®we = —Kfw. (¥ we € T*X) ‘

now we are prepared to relate the curvatures of V, and D, (V w. € T*X)

DyDywe = Do(hp*he*Vawe) = ho! By?hFV s (hy*hi®V g we)
= hafhbdhcer Vd We — € hceKab ndvd We — € hbdKac nevd We
= hafhbdhcech Viwe — ehf Ky ndvd we + € Ko Ky we

by which, as w, is arbitrary, we get the Gauss relation:

“Rabe® = hal Mp9heFhi® Rygid + €[ Koo® — KpoKo°]
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The Codazzi relation:

b

Examples: hob = 8,° — engn

@ similarly, by definition ‘ (VaVy — VVa) nd = —Rapc?n¢ ‘

= in determining the contraction ‘Rabcd nChe®hPh g9 ‘ we need to evaluate
he®hPhqg? (Vo Vi nd)
@ which, by ‘ Van? = §,°Venb = (he® + engn®)Vent = Kb + engnl, ‘

he®hiPha® (Vo Vi nd) = he2h s ha* (Vo [Kp? + enpnd))
= heahfbhdk(va Kbd) + € he“hf”(va nb)hd
=D K;* + e K pn”

from which we get the Codazzi relation as:

heahfbhdk ncRabcd = —2D[e Kf]k

contracting in f, g and using the symmetry of the Riemann tensor we get

| he" n°Rye = Dy K.» — D, K"
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The 37 relation:  hy¢h,nn‘ R,

Requires derivatives non-tangential to a single hypersurface: foliations are needed

@ Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M >~ R x ¥, for some n-dimensional manifold .

e known to hold for globally hyperbolic spacetimes (Lorentzian case)

e equivalent to the existence of a smooth function o : M — R with
non-vanishing gradient V.o such that the o = const level surfaces
Yo = {0} x X comprise the one-parameter foliation of M.

° nawvao...&...g“bﬂ n“:g“bnb
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o is “time evolution vector field” if:

@ the integral curves of 0® meet the o = const level surfaces precisely once

o [ =1]

U“zaj’_+0ﬁ:Nn“+Na

o where N and N® denotes the lapse and shift of o%:

‘Nze(aene) and N®=h%o°
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The 3" relation: h,behfd nn¢ Ryee! = non® Ryt

Examples: h,b = 6,° — engn®

@ we need some lemmas:
Lemma 1: \neve ng, =—€Dy(In N) ‘

oeVeazl&0“:Nn“—|—N“‘:>‘Nneveazl‘:ﬂna:eNVao‘é

nVeng, =nV, (e N Vo0o) =€ [(n°Ve N) (e N"'ng) + Nn® (V,Veo)]

=€ [enaneV (InN) + N {V.(n°V.o) W}}

=e[=Vuo(lnN) +enyn®Ve.(InN)] = —eD,(In N)

@ the symbol in expressions indicates that the two sides get to be equal to each other
once projections to o = conts level surfaces, in the free indexes, have been performed

o Lemma 3: ‘ﬁnKbd =~ neV, K¢ ‘ +K . 4(Vyn® 7*(Vend) as

KAV n®) = Ky (Ven?) = KKy + emyn®) — K (Ko + ene i) 20|

o Lemma 4: |n°V, K. = Vi (n*5K.7) — (Vyn) K. ? = — K K,
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The 3" relation: h,behfdn“nc Rl = non R0

b

Examples: h,b = 6,° — engn

using ‘ Vonl = 6,°Venb = Kb + engn® ‘ and ‘hu =—eD,(InN) ‘ we get

nn° Rgped = — n*(VoVy — Vi Vo) n?
= —n? {Va (K + emyn?] — Vy [K4 + enbhd]}
= — VK" — enpn® + n*V,K,* + € (n°V57,) 0
—engy (N*V, hd) + €2V, nd
~ — 2, Ky — eDy(InN)DUIn N) — K,°K.? — € Dy(D%(In N))
= - 2Kt — K,°K.* — e N"'D,DN

@ The 3" relation:

hphpinn® Roeo! = — £, Ky? — KK % — e N1 D, DN
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Projections of the Ricci tensor: nen’ R.s, ha®n’ Res, ha®hs” R.
J f f

hetnd Ry and nend R, ¥

o |ho®nfRey = D) K, — D, K"

has already been determined by the contracted Codazzi relation
e from the Gauss relation we get

(n)f{ac (n)P{aece = hafhjehck Rfekj +e€ [KacKee - KceKae]
(n) () ac e j e e
. R =" TRuh Zhj hfkaekj-l-E[(Ke )Q—Kefo]
ut

(h,al’ =6,0 — E'na'nb)

hj¢h* Rped = (g% — en/n¥) [Rpp — en®nI Ryerj] = R — 2en/n® Ry,

thereby

n°n! Rey = %e {(R = WR) +e{(K°)? — KoK/ }]

e Theorema Egregium of Gauss (“remarkable theorem™)

2ennf Geg —R(1—¢€) = «

—"R+e{(K.)?— K. K}
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Projections of the Ricci tensor: nen’ R.;, ha®n’ Ref, ha®hy’
J f

hothy’ R.; [+ the contracted Gauss relation & 3" relation ]

ho®ha’ Rep = h°ha’ g°° Races = h*ha’ B Races + € hyha’ nn Raecs
= {(n)Rbd — e[ KpaK© — KbeKde]}
+e{-LKa+ K,*Kqe — e N"'DyDgN }
= “Rpa + € {—LoKpa — KpaK.® + 2K, Ko — e N"' D, DyN}

o the contraction h*hy°hy’ R.; yields

R—en®n' Ry
= "R+ e {-h2, Ky — (K.%)? + 2K ;K — e N"'D°D,N}

e thereby, using the previously derived expression n°n/ R.;, we get

R="R+e{-2L(Koah"") — (K.*)? = K.;K*/ —2e N"'D*D.N}

where
WL, (Kpg) = LK) — KpaZuh® = 2, (Kpah) + 2Kpa K
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That is all for now... J
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