On the use of evolutionary methods in metric theories of gravity III.

István Rácz
istvan.racz@fuw.edu.pl \& racz.istvan@wigner.mta.hu
Faculty of Physics, University of Warsaw, Warsaw, Poland Wigner Research Center for Physics, Budapest, Hungary

Supported by the POLONEZ programme of the National Science Centre of Poland which has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No. 665778.

European Commission Horizon 2020
European Union funding
for Research \& Innovation

Institute of Theoretical Physics, University of Warsaw Warsaw, 18 October 2018

The main message and the program for today:

The main message:

some of the arguments and techniques developed originally and applied so far exclusively only in the Lorentzian case do also apply to Riemannian spaces

The program for today:

- Kinematical background: $\left(M, g_{a b}\right)$
- notations and conventions
- the ambient space ($M, g_{a b}$) with no use of field equations
- embedded codimension-one surfaces
- the basic tools are $n+1$ decompositions
- the decomposition of the ambient space Riemann tensor
- the decomposition of the ambient space Ricci tensor
- foliations of the ambient manifold by codimension-one surfaces
- another alternative decomposition of $\nabla_{a} n_{b}$
- some fundamental relations

The main areas where $3+1$ decompositions had been used:

- initial value problem

Darmois (1923) [$N=1, N^{a}=0$, Gaussian normal system], Lichnerowicz (1939) [$N^{a}=0$, a bit more flexible], Choque-Bruhat (1952) [the generic one], \ldots

- Hamiltonian formalism

Dirac (1959), Arnowitt-Deser-Misner (ADM), Wheeler (1960-1970), Moncrief (1975),...

Notations and conventions:

The generic setup:

The considered spaces: $\left(M, g_{a b}\right)$

- $M:(n+1)$-dimensional, smooth, paracompact, connected, orientable manifold
- $g_{a b}$: smooth, Lorentzian $(-,+,+,+)$ or Riemannian $(+,+,+,+)$ metric

The abstract index notation

- A tensor of type (k, l) will be denoted by a letter followed by k contravariant and l covariant, lower case Latin indices: $T^{a_{1} \ldots a_{k}}{ }_{b_{1} \ldots b_{l}}$
- Components relevant for particular choices of dual basis fields $\left\{\mathrm{v}_{\nu}\right\} \subset \mathcal{T},\left\{\mathrm{v}^{* \nu}\right\} \subset \mathcal{T}^{*}$ will be indicated by using lower case Greek indices: $T^{\mu_{1} \ldots \mu_{k}}{ }_{\nu_{1} \ldots \nu_{l}}$
- isomorphism between \mathcal{T} and \mathcal{T}^{*} provided by the metric:
$v^{a}=g^{a b} v_{b} \ldots$

Notation I.:

Curvature:

- The unique torsion free metric compatible covariant derivative operator ∇_{a}

$$
\nabla_{a} g_{b c}=0
$$

- the action of the commutator can be expressed in terms of a tensor field $R_{a b c}{ }^{d}$ such that for an arbitrary form field ω_{a}

$$
\begin{gathered}
\left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) \omega_{c}=R_{a b c}^{d} \omega_{d} \\
\left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) T^{c_{1} \ldots c_{k}} d_{d_{1} \ldots d_{l}}=-\sum_{i=1}^{k} R_{a b e^{c_{i}} T^{c_{1} \ldots e^{i}} c_{k}}^{d_{1} \ldots d_{l}+} \\
+\sum_{j=1}^{l} R_{a b d_{j}}^{e} T^{c_{1} \ldots c_{k}}{ }_{d_{1} \ldots e^{j} \ldots d_{l}}^{j}
\end{gathered}
$$

Key properties of the Riemann tensor:

If ∇_{a} is a torsion free covariant derivative operator and $R_{a b c}{ }^{d}$ its curvature
(1) $R_{a b c}{ }^{d}=-R_{b a c}{ }^{d}$,
(2) $R_{[a b c]}{ }^{d}=0$,
(3) $R_{a b c d}=-R_{a b d c}$ (if ∇_{a} metric compatible),
(4) $\nabla_{[a} R_{b c] d}{ }^{e}=0 \quad$ [Bianchi-identity] $\quad\left(\nabla_{a} R_{b c d}{ }^{e}+\nabla_{c} R_{a b d}{ }^{e}+\nabla_{b} R_{c a d}{ }^{e}=0\right)$.

Ricci tensor, scalar curvature, Einstein tensor:

- ! $R_{a b c}{ }^{d}$: curvature of a metric compatible ∇_{a}

$$
\text { (1) and (3) } \Rightarrow R_{a}{ }^{a}{ }_{c}^{d}=R_{a b e}=0 \text { BUT } R_{a b} a d \text { and } R_{a b c}{ }^{b} \text { in general not } \Rightarrow
$$

- Ricci tensor:

$$
\begin{gathered}
R_{a b}=R_{a e b}{ }^{e} \\
{\text { symmetric }{ }_{R_{a b}}=R_{a e b}{ }^{e}=R_{e a}{ }^{e}{ }_{b}=R_{e b}{ }^{e}{ }_{a}=R_{b a}}^{\text {and }}
\end{gathered}
$$

- scalar curvature:

$$
R=R_{a b} g^{a b}=R_{a}{ }^{a}
$$

- Einstein tensor:

$$
G_{a b}=R_{a b}-\frac{1}{2} g_{a b} R, \quad\left(\nabla^{a} G_{a b}=0\right)
$$

Embeddings of codimension-one surfaces:

smooth codimension-one surface

submanifold in an ambient space $\left(M, g_{a b}\right)$
φ
φ is an embedding if $\varphi: \Sigma \rightarrow \varphi[\Sigma]$ is a homeomorphism

- self-intersection of $\varphi[\Sigma]$ is not allowed
- there exist linear maps $\varphi_{*}: \mathcal{T}(p) \rightarrow \mathcal{T}(\varphi(p))$ and $\varphi^{*}: \mathcal{T}^{*}(\varphi(p)) \rightarrow \mathcal{T}^{*}(p)$ relating the tangent and cotangent spaces of points $p \in \Sigma$ and $\varphi(p) \in M$, respectively
- these can be extended to $(k, 0)$ and $(0, l)$ type tensors but, as $\varphi[\Sigma] \subset M$ is a codimension-one surface in M (a proper one-dimension lower subset of M), there is no $\varphi *$ that could relate arbitrary (k, l) type tensors

Morse function:

- there exist a smooth function $\sigma: \mathscr{O}[\subset M] \rightarrow \mathbb{R}$ on a neighborhood \mathscr{O} of $\varphi[\Sigma]$ such that $\partial_{\alpha} \sigma \neq 0$ (almost everywhere)

$$
\varphi[\Sigma]=\{p \in M \mid \sigma(p)=\text { const }\}
$$

- in mathematician's sayings: $\sigma: \mathscr{O}[\subset M] \rightarrow \mathbb{R}$ is usually assumed to be a Morse function such that it has only non-degenerate and isolated critical points
- a point is critical point is where $\partial_{\alpha} \sigma=0$
- the critical point is non-degenerate if the Hessian of the map, i.e. the matrix $\partial_{\alpha} \partial_{\beta} \sigma$ is non-singular; the index of a critical point is the number of the negative eigenvalues
- in physicist's sayings: only regular origins may occur; only positive eigenvalues of the Hessian are allowed or, in other words, there exists a well defined tangent space there

The $n+1$ decomposition:

The unit normals

- there exist a smooth function $\sigma: \mathscr{O}[\subset M] \rightarrow \mathbb{R}$ with non-vanishing gradient $\partial_{a} \sigma$ such that $\varphi[\Sigma]$-from now on (by standard abuse of notation) we denote it by Σ-is represented by a $\sigma=$ const level surface
- $n_{a} \sim \partial_{a} \sigma \ldots \& \ldots g^{a b} \longrightarrow n^{a}=g^{a b} n_{b}$

- n^{a} the 'unit norm' vector field that is normal to Σ

$$
n^{a} n_{a}=\left.\epsilon \quad n_{a}\right|_{\mathscr{O}}=\left(\epsilon g^{e f} \partial_{e} \sigma \partial_{f} \sigma\right)^{-\frac{1}{2}}\left(\partial_{a} \sigma\right)
$$

- the sign is not fixed: ϵ takes the value -1 or +1 for Lorentzian or Riemannian metric $g_{a b}$, respectively.

Projections:

The projection operator:

- the projection operator

$$
h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b} \quad \text { with } \quad h_{a}{ }^{e} h_{e}{ }^{b}=h_{a}{ }^{b}
$$

to the $\sigma=$ const level surface

- the metric induced on the $\sigma=$ const level surface

$$
h_{a b}=h_{a}{ }^{e} h_{b}{ }^{f} g_{e f}=g_{a b}-\epsilon n_{a} n_{b}
$$

- the covariant derivative operator D_{a} associated with $h_{a b}: \forall \omega_{b}$ on Σ

$$
\begin{gathered}
D_{a} \omega_{b}:=h_{a}{ }^{d} h_{b}{ }^{e} \nabla_{d} \omega_{e} \\
D_{a} h_{b c}=h_{a}{ }^{d} h_{b}{ }^{e} h_{c}{ }^{f} \nabla_{d}\left(g_{e f}-\epsilon n_{e} n_{f}\right)=0
\end{gathered}
$$

- the curvature of D_{a} is internal w.r.t. Σ as it is determined by $h_{a b}$

Decompositions of $\nabla_{a} n_{b}$ using $\delta_{a}{ }^{b}=h_{a}{ }^{b}+\epsilon n_{a} n^{b}$

The acceleration and the "extrinsic curvature":

- a trivial decomposition

$$
\begin{aligned}
\nabla_{a} n_{b} & =\delta_{a}{ }^{e} \delta_{b}{ }^{f} \nabla_{e} n_{f}=\left(h_{a}^{e}+\epsilon n_{a} n^{e}\right)\left(h_{b}{ }^{f}+\epsilon n_{b} n^{f}\right) \nabla_{e} n_{f} \\
& =\left(h_{a}{ }^{e} h_{b}{ }^{f} \nabla_{e} n_{f}\right)+\epsilon\left(h_{a}{ }^{e} n_{b} n^{f}+h_{b}{ }^{f} n_{a} n^{e}\right)\left(\nabla_{e} n_{f}\right)+n_{a} n^{e} n_{b} n^{f}\left(\nabla_{e} n_{f}\right)
\end{aligned}
$$

- with $n^{f} \nabla_{e} n_{f}=\frac{1}{2} \nabla_{e}\left(n^{f} n_{f}\right)=0$
- the acceleration $\quad \dot{n}_{b}:=n^{e} \nabla_{e} n_{b}=h_{b}{ }^{f}\left(n^{e} \nabla_{e} n_{f}\right) \quad$ is tangential to Σ
- the extrinsic curvature on $\Sigma \quad K_{a b}=h^{e}{ }_{a} h^{f}{ }_{b} \nabla_{e} n_{f}=h^{e}{ }_{a} \nabla_{e} n_{b}$

1) $K_{a b}$ is symmetric as $\nabla_{e} n_{f}=\nabla_{(e} n_{f)}+\nabla_{[e} n_{f]}=\nabla_{(e} n_{f)}+n_{[e} X_{f]}$
in the last step the Frobenius theorem was applied to the hypersurface orthogonal n^{a}, i.e. there exists a form field X_{a} such that $\nabla_{[e} n_{f]}=n_{[e} X_{f]}$
2) $K_{a b}=h_{a}{ }^{e} h_{b}{ }^{f} \nabla_{(e} n_{f)}=\frac{1}{2} h_{a}{ }^{e} h_{b}{ }^{f} \mathscr{L}_{n} g_{e f}=\frac{1}{2} h_{a}{ }^{e} h_{b}{ }^{f} \mathscr{L}_{n} h_{e f}=\frac{1}{2} \mathscr{L}_{n} h_{a b}$

- the foregoings also imply

$$
\nabla_{a} n_{b}=\left(h_{a}{ }^{e} h_{b}{ }^{f} \nabla_{e} n_{f}\right)+\epsilon n_{a} h_{b}{ }^{f} n^{e}\left(\nabla_{e} n_{f}\right)=K_{a b}+\epsilon n_{a} \dot{n}_{b}
$$

The relations between the two Riemann tensors:

The Gauss relation:

Examples: $h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}$

- the only non-vanishing projections:

$$
h_{a}{ }^{f} h_{b}{ }^{g} h_{c}{ }^{k} h_{j}{ }^{e} R_{f g{ }^{j}}{ }^{j}
$$

$$
\begin{aligned}
& h_{a}{ }^{f} h_{b}{ }^{g} h_{j}^{e} n^{k} R_{f g k}{ }^{j}, h_{b}{ }^{f} h_{e}{ }^{d} n^{a} n^{c} R_{a f c}{ }^{e} \cong n^{a} n^{c} R_{a b c}{ }^{d} \\
& h_{h^{d}} h_{b}{ }^{f} \nabla_{d} h_{f}{ }^{e}=h_{a}{ }^{d} h_{b}{ }^{f} \nabla_{d}\left(g_{f}^{e}-\epsilon n_{f} n^{e}\right)=-\epsilon K_{a b} n^{e}
\end{aligned}
$$

$$
h_{a}{ }^{d} n^{e} \nabla_{d} \omega_{e}=\underline{h}_{a}{ }^{d} \nabla_{d}\left(n^{e} \omega_{e}\right)-\left[h_{a}{ }^{d} \nabla_{d} n^{e}\right] \omega_{e}=-K_{a}{ }^{e} \omega_{e} \quad\left(\forall \omega_{e} \in \mathcal{T}^{*} \Sigma\right)
$$

now we are prepared to relate the curvatures of ∇_{a} and $D_{a} \quad\left(\forall \omega_{e} \in \mathcal{T}^{*} \Sigma\right)$

$$
\begin{aligned}
D_{a} D_{b} \omega_{c} & =D_{a}\left(h_{b}{ }^{d}{h_{c}}^{e} \nabla_{d} \omega_{e}\right)=h_{a}{ }^{f} h_{b}{ }^{g} h_{c}{ }^{k} \nabla_{f}\left(h_{g}{ }^{d} h_{k}{ }^{e} \nabla_{d} \omega_{e}\right) \\
& =h_{a}{ }^{f}{h_{b}}^{d}{h_{c}}^{e} \nabla_{f} \nabla_{d} \omega_{e}-\epsilon h_{c}{ }^{e} K_{a b} n^{d} \nabla_{d} \omega_{e}-\epsilon h_{b}{ }^{d} K_{a c} n^{e} \nabla_{d} \omega_{e} \\
& ={h_{a}}^{f} h_{b}{ }^{d}{h_{c}}^{e} \nabla_{f} \nabla_{d} \omega_{e}-\epsilon h_{c}{ }^{e} K_{a b} n^{d} \nabla_{d} \omega_{e}+\epsilon K_{a c} K_{b}{ }^{e} \omega_{e}
\end{aligned}
$$

by which, as ω_{a} is arbitrary, we get the Gauss relation:

$$
{ }^{(n)} R_{a b c}{ }^{e}=h_{a}{ }^{f} h_{b}{ }^{g} h_{c}{ }^{k} h_{j}^{e} R_{f g k}^{j}+\epsilon\left[K_{a c} K_{b}^{e}-K_{b c} K_{a}^{e}\right]
$$

The Codazzi relation:

Examples: $h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}$

- similarly, by definition $\left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) n^{d}=-R_{a b c}{ }^{d} n^{c}$
\Rightarrow in determining the contraction
$R_{a b c}{ }^{d} n^{c} h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{g}$ we need to evaluate $h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{g}\left(\nabla_{a} \nabla_{b} n^{d}\right)$
- which, by $\nabla_{a} n^{b}=\delta_{a}{ }^{e} \nabla_{e} n^{b}=\left(h_{a}{ }^{e}+\epsilon n_{a} n^{e}\right) \nabla_{e} n^{b}=K_{a}{ }^{b}+\epsilon n_{a} \dot{n}^{b}$,

$$
\begin{aligned}
h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{k}\left(\nabla_{a} \nabla_{b} n^{d}\right) & =h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{k}\left(\nabla_{a}\left[K_{b}^{d}+\epsilon n_{b} \dot{n}^{d}\right]\right) \\
& =h_{e}^{a} h_{f}^{b} h_{d}^{k}\left(\nabla_{a} K_{b}^{d}\right)+\epsilon h_{e}^{a} h_{f}^{b}\left(\nabla_{a} n_{b}\right) \dot{n}^{d} \\
& =D_{e} K_{f}^{k}+\epsilon K_{e f} \dot{n}^{k}
\end{aligned}
$$

from which we get the Codazzi relation as:

$$
h_{e}{ }^{a} h_{f}{ }^{b} h_{d}{ }^{k} n^{c} R_{a b c}{ }^{d}=-2 D_{[e} K_{f]}{ }^{k}
$$

contracting in f, g and using the symmetry of the Riemann tensor we get

$$
h_{e}{ }^{a} n^{c} R_{a c}=D_{h} K_{e}^{h}-D_{e} K_{h}^{h}
$$

The $3^{r d}$ relation: $\quad h_{b}{ }^{e} h_{f}{ }^{d} n^{a} n^{c} R_{\text {aec }}{ }^{f}$

Requires derivatives non-tangential to a single hypersurface: foliations are needed

- Assume: M is foliated by a one-parameter family of homologous hypersurfaces, i.e. $M \simeq \mathbb{R} \times \Sigma$, for some n-dimensional manifold Σ.
- known to hold for globally hyperbolic spacetimes (Lorentzian case)
- equivalent to the existence of a smooth function $\sigma: M \rightarrow \mathbb{R}$ with non-vanishing gradient $\nabla_{a} \sigma$ such that the $\sigma=$ const level surfaces $\Sigma_{\sigma}=\{\sigma\} \times \Sigma$ comprise the one-parameter foliation of M.
- $\quad n_{a} \sim \nabla_{a} \sigma \ldots \& \ldots g^{a b} \longrightarrow n^{a}=g^{a b} n_{b}$

σ^{a} is "time evolution vector field" if:

- the integral curves of σ^{a} meet the $\sigma=$ const level surfaces precisely once
- $\sigma^{e} \nabla_{e} \sigma=1$

$$
\sigma^{a}=\sigma_{\perp}^{a}+\sigma_{\|}^{a}=N n^{a}+N^{a}
$$

- where N and N^{a} denotes the lapse and shift of σ^{a} :

$$
N=\epsilon\left(\sigma^{e} n_{e}\right) \quad \text { and } \quad N^{a}=h_{e}^{a} \sigma^{e}
$$

The $3^{r d}$ relation: $h_{b}{ }^{e} h_{f}{ }^{d} n^{a} n^{c} R_{a e c}{ }^{f} \cong n^{a} n^{c} R_{a b c}{ }^{d}$

Examples: $h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}$

- we need some lemmas:

Lemma 1: $\quad n^{e} \nabla_{e} n_{a}=-\epsilon D_{a}(\ln N)$

$$
\sigma^{e} \nabla_{e} \sigma=1 \& \sigma^{a}=N n^{a}+N^{a} \Rightarrow N n^{e} \nabla_{e} \sigma=1 \Rightarrow n_{a}=\epsilon N \nabla_{a} \sigma \Rightarrow
$$

$$
\begin{aligned}
n^{e} \nabla_{e} n_{a} & =n^{e} \nabla_{e}\left(\epsilon N \nabla_{a} \sigma\right)=\epsilon\left[\left(n^{e} \nabla_{e} N\right)\left(\epsilon N^{-1} n_{a}\right)+N n^{e}\left(\nabla_{a} \nabla_{e} \sigma\right)\right] \\
& =\epsilon\left[\epsilon n_{a} n^{e} \nabla_{e}(\ln N)+N\left\{\nabla_{a}\left(n^{e} \nabla_{e} \sigma\right)-\left(\nabla_{a} n^{e}\right)\left(n_{e} \epsilon N^{-1}\right)\right\}\right] \\
& =\epsilon\left[-\nabla_{a}(\ln N)+\epsilon n_{a} n^{e} \nabla_{e}(\ln N)\right]=-\epsilon D_{a}(\ln N)
\end{aligned}
$$

- the symbol \cong in expressions indicates that the two sides get to be equal to each other once projections to $\sigma=$ conts level surfaces, in the free indexes, have been performed
- Lemma 3: $\mathscr{L}_{n} K_{b}{ }^{d} \cong n^{e} \nabla_{e} K_{b}{ }^{d}+K_{e}{ }^{d}\left(\nabla_{b} n^{e}\right)-K_{b}{ }^{e}\left(\nabla_{e} n^{d}\right)$ as
$K_{e}{ }^{d}\left(\nabla_{b} n^{e}\right)-K_{b}{ }^{e}\left(\nabla_{e} n^{d}\right)=K_{e}{ }^{d}\left(K_{b}{ }^{e}+\epsilon n_{b} \dot{n}^{e}\right)-K_{b}{ }^{e}\left(K_{e}{ }^{d}+\epsilon n_{e} \dot{n}^{d}\right) \cong 0$
- Lemma 4: $n^{e} \nabla_{b} K_{e}{ }^{d}=\nabla_{b}\left(n^{e} K_{e}{ }^{d}\right)-\left(\nabla_{b} n^{e}\right) K_{e}{ }^{d} \cong-K_{b}{ }^{e} K_{e}{ }^{d}$

The $3^{r d}$ relation: $h_{b}{ }^{e} h_{f}{ }^{d} n^{a} n^{c} R_{a e c}{ }^{f} \cong n^{a} n^{c} R_{a b c}{ }^{d}$

Examples: $h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}$
using $\nabla_{a} n^{b}=\delta_{a}{ }^{e} \nabla_{e} n^{b}=K_{a}{ }^{b}+\epsilon n_{a} \dot{n}^{b}$ and $\dot{n}_{a}=-\epsilon D_{a}(\ln N)$ we get

$$
\begin{aligned}
n^{a} n^{c} R_{a b c}{ }^{d}= & -n^{a}\left(\nabla_{a} \nabla_{b}-\nabla_{b} \nabla_{a}\right) n^{d} \\
= & -n^{a}\left\{\nabla_{a}\left[K_{b}{ }^{d}+\epsilon n_{b} \dot{n}^{d}\right]-\nabla_{b}\left[K_{b}{ }^{d}+\epsilon n_{b} \dot{n}^{d}\right]\right\} \\
= & -n^{a} \nabla_{a} K_{b}{ }^{d}-\epsilon \dot{n}_{b} \dot{n}^{d}+n^{a} \nabla_{b} K_{a}{ }^{d}+\epsilon\left(n^{a} \nabla_{b} n_{a}\right) \dot{n}^{d} \\
& -\epsilon n_{b}\left(n^{a} \nabla_{a} \dot{n}^{d}\right)+\epsilon^{2} \nabla_{b} \dot{n}^{d} \\
\cong & -\mathscr{L}_{n} K_{b}{ }^{d}-\epsilon D_{b}(\ln N) D^{d}(\ln N)-K_{b}{ }^{e} K_{e}{ }^{d}-\epsilon D_{b}\left(D^{d}(\ln N)\right) \\
= & -\mathscr{L}_{n} K_{b}{ }^{d}-K_{b}{ }^{e} K_{e}{ }^{d}-\epsilon N^{-1} D_{b} D^{d} N
\end{aligned}
$$

- The $3^{r d}$ relation:

$$
h_{b}{ }^{e} h_{f}{ }^{d} n^{a} n^{c} R_{a e c}{ }^{f}=-\mathscr{L}_{n} K_{b}{ }^{d}-K_{b}{ }^{e} K_{e}{ }^{d}-\epsilon N^{-1} D_{b} D^{d} N
$$

Projections of the Ricci tensor: $n^{e} n^{f} R_{e f}, h_{a}{ }^{e} n^{f} R_{e f}, h_{a}{ }^{e} h_{b}{ }^{f} R_{e f}$

$h_{a}{ }^{e} n^{f} R_{e f}$ and $n^{e} n^{f} R_{e f}$

$$
\left(h_{a}{ }^{b}=\delta_{a}{ }^{b}-\epsilon n_{a} n^{b}\right)
$$

- $h_{a}{ }^{e} n^{f} R_{e f}=D_{h} K_{a}{ }^{h}-D_{a} K_{h}{ }^{h}$
has already been determined by the contracted Codazzi relation
- from the Gauss relation we get

$$
{ }^{(n)} R_{a c}={ }^{(n)} R_{a e c}^{e}=h_{a}^{f} h_{j}^{e} h_{c}{ }^{k} R_{f e k}{ }^{j}+\epsilon\left[K_{a c} K_{e}^{e}-K_{c e} K_{a}{ }^{e}\right]
$$

$$
{ }^{(n)} R={ }^{(n)} R_{a c} h^{a c}=h_{j}{ }^{e} h^{f k} R_{f e k}{ }^{j}+\epsilon\left[\left(K_{e}{ }^{e}\right)^{2}-K_{e f} K^{e f}\right]
$$

but

$$
h_{j}{ }^{e} h^{f k} R_{f e k}{ }^{j}=\left(g^{f k}-\epsilon n^{f} n^{k}\right)\left[R_{f k}-\epsilon n^{e} n^{j} R_{f e k j}\right]=R-2 \epsilon n^{f} n^{e} R_{f e}
$$

thereby

$$
n^{e} n^{f} R_{e f}=\frac{1}{2} \epsilon\left[\left(R-{ }^{(n)} R\right)+\epsilon\left\{\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}\right\}\right]
$$

- Theorema Egregium of Gauss ("remarkable theorem")

$$
2 \epsilon n^{e} n^{f} G_{e f}-R(1-\epsilon)=-{ }^{(n)} R+\epsilon\left\{\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}\right\}
$$

Projections of the Ricci tensor: $n^{6} n^{f} R_{\text {ef }}, h_{a}{ }^{6} n^{f} R_{e f}, h_{a}{ }^{9} h_{s^{f}} R_{e f}$

$h_{a}{ }^{e} h_{b}{ }^{f} R_{e f} \quad\left[\Leftarrow\right.$ the contracted Gauss relation \& $3^{r d}$ relation]

$$
\begin{aligned}
h_{b}{ }^{e} h_{d}{ }^{f} R_{e f}= & h_{b}{ }^{e} h_{d}{ }^{f} g^{a c} R_{a e c f}=h_{b}{ }^{e} h_{d}{ }^{f} h^{a c} R_{a e c f}+\epsilon h_{b}{ }^{e} h_{d}{ }^{f} n^{a} n^{c} R_{a e c f} \\
= & \left\{\begin{array}{r}
\left.{ }^{(n)} R_{b d}-\epsilon\left[K_{b d} K_{e}{ }^{e}-K_{b e} K_{d}{ }^{e}\right]\right\} \\
\\
\\
\\
\quad+\epsilon\left\{-\mathscr{L}_{n} K_{b d}+K_{b}{ }^{e} K_{d e}-\epsilon N^{-1} D_{b} D_{d} N\right\} \\
=
\end{array}{ }^{(n)} R_{b d}+\epsilon\left\{-\mathscr{L}_{n} K_{b d}-K_{b d} K_{e}{ }^{e}+2 K_{b}^{e} K_{d e}-\epsilon N^{-1} D_{b} D_{d} N\right\}\right.
\end{aligned}
$$

- the contraction $h^{b d} h_{b}{ }^{e} h_{d}{ }^{f} R_{e f}$ yields

$$
\begin{aligned}
& R-\epsilon n^{e} n^{f} R_{e f} \\
& \quad={ }^{(n)} R+\epsilon\left\{-h^{b d} \mathscr{L}_{n} K_{b d}-\left(K_{e}^{e}\right)^{2}+2 K_{e f} K^{e f}-\epsilon N^{-1} D^{e} D_{e} N\right\}
\end{aligned}
$$

- thereby, using the previously derived expression $n^{e} n^{f} R_{e f}$, we get

$$
R={ }^{(n)} R+\epsilon\left\{-2 \mathscr{L}_{n}\left(K_{b d} h^{b d}\right)-\left(K_{e}^{e}\right)^{2}-K_{e f} K^{e f}-2 \epsilon N^{-1} D^{e} D_{e} N\right\}
$$

where

$$
h^{b d} \mathscr{L}_{n}\left(K_{b d}\right)=\mathscr{L}_{n}\left(K_{b d} h^{b d}\right)-K_{b d} \mathscr{L}_{n} h^{b d}=\mathscr{L}_{n}\left(K_{b d} h^{b d}\right)+2 K_{b d} K^{b d}
$$

That is all for now...

