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The main message and the program for today:

The main message:

some of the arguments and techniques developed originally and
applied so far exclusively only in the Lorentzian case do also apply
to Riemannian spaces

The program for today:

Kinematical background: (M, gab)
notations and conventions
the ambient space (M, gab) with no use of field equations
embedded codimension-one surfaces
the basic tools are n+ 1 decompositions
the decomposition of the ambient space Riemann tensor
the decomposition of the ambient space Ricci tensor
foliations of the ambient manifold by codimension-one surfaces
another alternative decomposition of ∇anb
some fundamental relations
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The main areas where 3 + 1 decompositions had been used:

Σσ

initial value problem
Darmois (1923) [N = 1, Na = 0, Gaussian normal system], Lichnerowicz (1939)

[Na = 0, a bit more flexible], Choque-Bruhat (1952) [the generic one],...

Hamiltonian formalism
Dirac (1959), Arnowitt-Deser-Misner (ADM), Wheeler (1960-1970), Moncrief

(1975),...
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Notations and conventions:

The generic setup:

The considered spaces: (M, gab)

M : (n+ 1)-dimensional, smooth, paracompact, connected,
orientable manifold

gab: smooth, Lorentzian(−,+,+,+) or Riemannian(+,+,+,+) metric

The abstract index notation

A tensor of type (k, l) will be denoted by a letter followed by k
contravariant and l covariant, lower case Latin indices:
T a1...ak b1...bl
Components relevant for particular choices of dual basis fields
{vν} ⊂ T , {v∗ν} ⊂ T ∗ will be indicated by using lower case
Greek indices: T µ1...µkν1...νl
isomorphism between T and T ∗ provided by the metric:
va = gabvb ...
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Notation I.:

Curvature:

The unique torsion free metric compatible covariant derivative
operator ∇a

∇agbc = 0

the action of the commutator can be expressed in terms of a
tensor field Rabc

d such that for an arbitrary form field ωa

(∇a∇b −∇b∇a)ωc = Rabc
d ωd

(∇a∇b −∇b∇a) T
c1...ck

d1...dl = −
k∑
i=1

Rabe
ci T c1...e

i
^
...ck

d1...dl+

+
l∑

j=1

Rabdj
e T c1...ck

d1...e

j
^
...dl
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Key properties of the Riemann tensor:

If ∇a is a torsion free covariant derivative operator and Rabc
d its curvature

(1) Rabc
d = −Rbac

d ,

(2) R[abc]
d = 0 ,

(3) Rabcd = −Rabdc (if ∇a metric compatible),

(4) ∇[aRbc]d
e = 0 [Bianchi-identity] (∇aRbcd

e +∇cRabd
e +∇bRcad

e = 0).

Ricci tensor, scalar curvature, Einstein tensor:

! Rabc
d: curvature of a metric compatible ∇a

(1) and (3) ⇒ Ra
a
c
d = Rabe

e = 0 BUT Rab
ad and Rabc

b in general not ⇒
Ricci tensor:

Rab = Raeb
e

symmetric Rab = Raeb
e = Rea

e
b = Reb

e
a = Rba

scalar curvature:
R = Rabg

ab = Ra
a

Einstein tensor:

Gab = Rab − 1
2 gabR , (∇aGab = 0) .
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Embeddings of codimension-one surfaces:

smooth codimension-one surface submanifold in an ambient space (M, gab)

n

n
n

a

a

a

n
a

n
a

n
a

Σ ϕ[Σ]

ϕ

ϕ is an embedding if ϕ : Σ→ ϕ[Σ] is a homeomorphism

self-intersection of ϕ[Σ] is not allowed

there exist linear maps ϕ∗ : T (p)→ T (ϕ(p)) and ϕ∗ : T ∗(ϕ(p))→ T ∗(p)
relating the tangent and cotangent spaces of points p ∈ Σ and ϕ(p) ∈M ,
respectively

these can be extended to (k, 0) and (0, l) type tensors but, as ϕ[Σ] ⊂M is a
codimension-one surface in M (a proper one-dimension lower subset of M),
there is no ϕ∗ that could relate arbitrary (k, l) type tensors
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Morse function:

there exist a smooth function σ : O [⊂M ]→ R on a
neighborhood O of ϕ[Σ] such that ∂ασ 6= 0 (almost everywhere)

ϕ[Σ] = { p ∈M | σ(p) = const }

in mathematician’s sayings: σ : O [⊂M ]→ R is usually assumed
to be a Morse function such that it has only non-degenerate
and isolated critical points

a point is critical point is where ∂ασ = 0
the critical point is non-degenerate if the Hessian of the map, i.e. the matrix

∂α∂βσ is non-singular;

the index of a critical point is the number of the negative eigenvalues

in physicist’s sayings: only regular origins may occur;
only positive eigenvalues of the Hessian are allowed or, in other
words, there exists a well defined tangent space there
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The n+ 1 decomposition:

The unit normals

there exist a smooth function σ : O [⊂M ]→ R with non-vanishing gradient
∂aσ such that ϕ[Σ]—from now on (by standard abuse of notation) we denote
it by Σ—is represented by a σ = const level surface

na ∼ ∂aσ . . . & . . . gab −→ na = gabnb

Σ

n
a

n
a

n
a

n
a

na the ‘unit norm’ vector field that is normal to Σ

nana = ε na|O = (ε gef∂eσ∂fσ)−
1
2 (∂aσ)

the sign is not fixed: ε takes the value −1 or +1 for Lorentzian or Riemannian
metric gab, respectively.
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Projections:

The projection operator:

the projection operator

ha
b = δa

b − ε nanb with ha
ehe

b = ha
b

to the σ = const level surface

the metric induced on the σ = const level surface

hab = ha
ehb

f gef = gab − ε nanb

the covariant derivative operator Da associated with hab: ∀ωb
on Σ

Daωb := ha
dhb

e∇d ωe

Dahbc = ha
dhb

ehc
f∇d (gef − ε nenf ) = 0

the curvature of Da is internal w.r.t. Σ as it is determined by hab
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Decompositions of ∇anb using δa
b = ha

b + ε nan
b

The acceleration and the “extrinsic curvature”:
a trivial decomposition

∇anb = δa
eδb

f∇enf = (ha
e + ε nan

e)(hb
f + ε nbn

f )∇enf

= (ha
ehb

f∇enf ) + ε(ha
enbn

f + hb
fnan

e)(∇enf ) + nan
enbn

f (∇enf )

with nf∇enf = 1
2 ∇e(n

fnf ) = 0

the acceleration ṅb := ne∇enb = hb
f (ne∇enf ) is tangential to Σ

the extrinsic curvature on Σ Kab = heah
f
b∇enf = hea∇enb

1) Kab is symmetric as ∇enf = ∇(enf) +∇[enf ] = ∇(enf) + n[eXf ]

in the last step the Frobenius theorem was applied to the hypersurface orthogonal

na, i.e. there exists a form field Xa such that ∇[enf ] = n[eXf ]

2) Kab = ha
ehb

f∇(e nf) = 1
2 ha

ehb
fLngef = 1

2 ha
ehb

fLnhef = 1
2 Lnhab

the foregoings also imply

∇anb = (ha
ehb

f∇enf ) + ε nahb
fne(∇enf ) = Kab + ε naṅb
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The relations between the two Riemann tensors:

The Gauss relation: Examples: ha
b = δa

b − ε nanb

the only non-vanishing projections: ha
fhb

ghc
khj

eRfgk
j ,

ha
fhb

ghj
enk Rfgk

j , hb
fhe

dnancRafc
e ∼= nancRabc

d

ha
dhb

f∇d hf
e = ha

dhb
f∇d (gf

e − ε nfne) = −εKabn
e

ha
dne∇d ωe =((((

(((ha
d∇d (neωe)− [ha

d∇d n
e]ωe = −Ka

eωe (∀ ωe ∈ T ∗Σ)

now we are prepared to relate the curvatures of ∇a and Da (∀ ωe ∈ T ∗Σ)

DaDb ωc = Da(hb
dhc

e∇d ωe) = ha
fhb

ghc
k∇f (hg

dhk
e∇d ωe)

= ha
fhb

dhc
e∇f ∇d ωe − ε hceKab n

d∇d ωe − ε hbdKac n
e∇d ωe

= ha
fhb

dhc
e∇f ∇d ωe − ε hceKab n

d∇d ωe + εKacKb
e ωe

by which, as ωa is arbitrary, we get the Gauss relation:

(n)

Rabc
e = ha

fhb
ghc

khj
eRfgk

j + ε [KacKb
e −KbcKa

e ]

István Rácz (University of Warsaw & Wigner RCP) UW-ITP, 18 October 2018 12 / 20



The Codazzi relation:

Examples: ha
b = δa

b − ε nanb

similarly, by definition (∇a∇b −∇b∇a)nd = −Rabc
d nc

⇒ in determining the contraction Rabc
d nche

ahf
bhd

g we need to evaluate

he
ahf

bhd
g(∇a∇b n

d)

which, by ∇an
b = δa

e∇en
b = (ha

e + ε nan
e)∇en

b = Ka
b + ε naṅ

b ,

he
ahf

bhd
k(∇a∇b n

d) = he
ahf

bhd
k(∇a [Kb

d + ε nbṅ
d])

= he
ahf

bhd
k(∇aKb

d) + ε he
ahf

b(∇a nb)ṅ
d

= DeKf
k + εKef ṅ

k

from which we get the Codazzi relation as:

he
ahf

bhd
k ncRabc

d = −2D[eKf ]
k

contracting in f, g and using the symmetry of the Riemann tensor we get

he
a ncRac = DhKe

h −DeKh
h
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The 3rd relation: hb
ehf

dnancRaec
f

Requires derivatives non-tangential to a single hypersurface: foliations are needed

Assume: M is foliated by a one-parameter family of homologous
hypersurfaces, i.e. M ' R× Σ, for some n-dimensional manifold Σ.

known to hold for globally hyperbolic spacetimes (Lorentzian case)
equivalent to the existence of a smooth function σ : M → R with
non-vanishing gradient ∇aσ such that the σ = const level surfaces
Σσ = {σ} × Σ comprise the one-parameter foliation of M .

na ∼ ∇aσ . . . & . . . gab −→ na = gabnb

Σσ

n
a n

a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a

n
a
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σa is “time evolution vector field” if:

the integral curves of σa meet the σ = const level surfaces precisely once

σe∇eσ = 1

σa = σa
⊥ + σa

‖ = N na +Na

n
a n

a

n
a

n
a

n
a n

a

n
a

na

na

n
a

n
a

na

n
a

σσ

σ

σ

σ
σ

aa

a

a

a

a

σ

σa
a

σ
a

σ
a

N
an

a
N

where N and Na denotes the lapse and shift of σa:

N = ε (σene) and Na = hae σ
e
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The 3rd relation: hb
ehf

dnancRaec
f ∼= nancRabc

d

Examples: ha
b = δa

b − ε nanb

we need some lemmas:

Lemma 1: ne∇e na = −εDa(lnN)

σe∇eσ = 1 & σa = N na +Na ⇒ N ne∇eσ = 1 ⇒ na = εN ∇aσ ⇒

ne∇e na = ne∇e (εN ∇aσ) = ε
[
(ne∇eN) (εN−1na) +N ne (∇a∇eσ)

]
= ε

[
ε nan

e∇e (lnN) +N {∇a(ne∇eσ)−(((((
(((((∇a n

e) (neεN
−1)}

]
= ε [−∇a(lnN) + ε nan

e∇e (lnN) ] = −εDa(lnN)

the symbol ∼= in expressions indicates that the two sides get to be equal to each other

once projections to σ = conts level surfaces, in the free indexes, have been performed

Lemma 3: LnKb
d ∼= ne∇eKb

d +
(((

((((
(((

((
Ke

d(∇b n
e)−Kb

e(∇e n
d) as

Ke
d(∇b n

e)−Kb
e(∇e n

d) = Ke
d(Kb

e + ε nb ṅ
e)−Kb

e(Ke
d + ε ne ṅ

d) ∼= 0

Lemma 4: ne∇bKe
d =���

���∇b (neKe
d)− (∇b n

e)Ke
d ∼= −Kb

eKe
d
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The 3rd relation: hb
ehf

dnancRaec
f ∼= nancRabc

d

Examples: ha
b = δa

b − ε nanb

using ∇an
b = δa

e∇en
b = Ka

b + ε naṅ
b and ṅa = −εDa(lnN) we get

nancRabc
d = − na(∇a∇b −∇b∇a)nd

= − na
{
∇a [Kb

d + ε nbṅ
d]−∇b [Kb

d + ε nbṅ
d]
}

= − na∇aKb
d − ε ṅbṅd + na∇bKa

d + ε��
���(na∇b na) ṅd

− ε nb (na∇a ṅ
d) + ε2∇b ṅ

d

∼= −LnKb
d − εDb(lnN)Dd(lnN)−Kb

eKe
d − εDb(D

d(lnN))

= −LnKb
d −Kb

eKe
d − εN−1DbD

dN

The 3rd relation:

hb
ehf

dnancRaec
f = −LnKb

d −Kb
eKe

d − εN−1DbD
dN
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Projections of the Ricci tensor: nenf Ref , ha
enf Ref , ha

ehb
f Ref

ha
enf Ref and nenf Ref (ha

b = δa
b − ε nanb)

ha
e nfRef = DhKa

h −DaKh
h

has already been determined by the contracted Codazzi relation

from the Gauss relation we get

(n)

Rac =
(n)

Raec
e = ha

fhj
ehc

k Rfek
j + ε [KacKe

e −KceKa
e ]

(n)

R =
(n)

Rach
ac = hj

ehfk Rfek
j + ε [ (Ke

e)2 −KefK
ef ]

but

hj
ehfk Rfek

j = (gfk − ε nfnk)
[
Rfk − ε nenjRfekj

]
= R− 2 ε nfneRfe

thereby
nenf Ref = 1

2 ε
[
(R− (n)

R) + ε { (Ke
e)2 −KefK

ef }
]

Theorema Egregium of Gauss (“remarkable theorem”)

2 ε nenf Gef −R (1− ε) = −(n)

R+ ε { (Ke
e)2 −KefK

ef }
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Projections of the Ricci tensor: nenf Ref , ha
enf Ref , ha

ehb
f Ref

ha
ehb

f Ref [⇐ the contracted Gauss relation & 3rd relation ]

hb
ehd

fRef = hb
ehd

fgacRaecf = hb
ehd

fhacRaecf + ε hb
ehd

fnancRaecf

=
{

(n)

Rbd − ε [KbdKe
e −KbeKd

e ]
}

+ ε
{
−LnKbd +Kb

eKde − εN−1DbDdN
}

=
(n)

Rbd + ε
{
−LnKbd −KbdKe

e + 2Kb
eKde − εN−1DbDdN

}
the contraction hbdhb

ehd
fRef yields

R− ε nenf Ref

=
(n)

R+ ε
{
−hbdLnKbd − (Ke

e)2 + 2KefK
ef − εN−1DeDeN

}
thereby, using the previously derived expression nenf Ref , we get

R =
(n)

R+ ε
{
−2 Ln(Kbdh

bd)− (Ke
e)2 −KefK

ef − 2 εN−1DeDeN
}

where

hbdLn(Kbd) = Ln(Kbdh
bd)−KbdLnh

bd = Ln(Kbdh
bd) + 2KbdK

bd
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That is all for now...
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